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An engineering method for solving nonlinear aerodynamic problems of
plane and axisymmetric steady flows is proposed. The method is a
modification of the Monte Carlo method.

Method. Let
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be a nonlinear differential equation in partial deriva-

tives that describes a plane or axisymmetric steady

flow, (x,y)be a point in the region w, and let ¥, Ix,...

be the function to be determined and its derivatives.
We add to Eq. (1) the boundary conditions
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where T is the boundary of region w.
We construct the function
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which has continuous partial derivatives to the order
of the higher derivatives in Eq. (1), satisfies condi-
tions (2) for any values of the parameters Cy,..., Cp,
and with the proper selection of these parameters can
approximate the solution of the problem.

Finding the approximate solution
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takes its minimum value. Here (x;,yi,i=1,2,...,N)
is a system of points from region w, and
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If we cannot construct a ¢~1 such that conditions (2) are
satisfied precisely, we can attempt, selecting Cjy,. .

» Cp, to satisfy approximately both Eq (1) and con~
dltlons 2).

In this case, & must be taken as
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Xigp yig 1= L, 2,0, N1) is a system of points taken
at the boundary I'. The constant v is selected accord-
ing to the equation which it is desired to satisfy with
the greater accuracy: Eq. (1) or conditions (2). If ap-
proximation (4) is successfully chosen, the value of v
will have little effect on the final result.

Finding the minimum of &. We call an arbitrary
set of values Cy,..., Cy a point in an n-dimensional
space EN, Each such point from region & C E® cor-
responds to a particular & value. To find Ci,. ves Cn
we use the statistical-tests method in the following
form. Let the value &' of function & at some initial
point Ci,..., C} be found. Then, with the aid of a set
of pseudorandom numbers ¢ that are uniformly dis-
tributed in the interval (-1,+1), we select a new point
from the vicinity of the initial point

C;=Ci+18C;, j=1,2 ..., n )
The values 6C4 determine the dimensions of this vi-
cinity. The value of & at the new point is compared
with &'. If & < &', the new point is made the initial
point for the next test. Otherwise, the initial point
remains the same. As a result of this computational
process, the sequence of initial points converges on
point Cy,..., Cph. As the region of minimum & values
is approached, the "search step" (6C5) should be re-
duced. This substantially increases the efficiency of
the process.

Program. The method is programmed as follows.

Let us explainthe designations in the flow chart (Fig. 1),
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1—input to working storage and decimal-to-binary
conversion,

2—reading of coordinates x4, y; of first point from
region w.

3—calculation of function fF and its derivatives from
given xi, yi, and Cy,..., Cn. Analytic expressions
as well as difference schemes canbeused in calcu-
lating the derivatives. The latter method usually
results in considerable shortening of the program.

4—calculation of F(xi,yi, C1,..., Cn) and storage of the

sum ZF4

5—generation of coordinates xj, yj of next point from
region w,

6—transfer of control, as shown in chart, according
to i~value.

7—comparison of obtained & with minimum &' found
in previous tests. Transfer of control depends on
result of this comparison.
8—entry of &, Cy,..., Cp in cells where &', Ci. .-
were previously stored.
9—calculation of new Cy,..., Cy by formulas (9).
10—generation of pseudorandom numbers ¢.
11—control from panel.
12—"search step" (GCJ-).
13—check print.
14—printout.

Test of method. The proposed method was tested on
the following nonlinear problems: 1) transonic flow
around a cylindrical body; 2) flow of a viscous incom~
pressible fluid between a system of staggered pipes at
close to the critical Re number; and 3) transonic flow
through a blade network.

The calculations were made at the Computer Labo-
ratory of the Ivanovo Power Institute on a Ural-2 dig-
ital computer. The available data (experimental and
those found by other methods) on these problems al-
lowed the solutions to be compared with actualflows.

Take, as an example, the results for the firstprob-
lem.

Flow in the vicinity of a cylindrical body is described
by the following differential equation:
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Here r and « are polar coordinates, ¥ is the velocity

potential,
k—1
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Fig. 2. Velocity distribution in section A—A:
1) experiment; 2) calculation; a) region of
strong nonlinearity.

is the square of the sound velocity, and k and U are
constants.
The solution is sought in the form

P =(r+ rcosa -+ 22 Cy R, (Ncosva,  (12)
n v

where

r—(u+2)_ (13)

In the calculation, we limited ourselves to the six co-
efficients: Cyy, Cy3, C15, Cs1, C33, and Cs.

The optimum values of these parameters were
sought in accordance with the method proposed above,
and also by the method proposed in [1, 2]. The results
are shown in Fig, 2.
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